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Abstract—Recent studies observed video download platforms
which contribute a large share to the overall traffic mix in
today’s operator networks. Traffic related to video downloads
has reached a level where operators, network equipment vendors,
and standardization organizations such as the IETF start to
explore methods in order to reduce the traffic load in the
network. Success or failure of these techniques depend on caching
potentials of the target applications’ traffic patterns.

Our work aims at providing detailed insight into caching
potentials of one of the leading video serving platforms: YouTube.
We monitored interactions of users of a large operator network
with the YouTube video distribution infrastructure for the time
period of one month. From these traffic observations, we examine
parameters that are relevant to the operation and effectiveness of
an in-network cache deployed in an edge-network. Furthermore,
we use our monitoring data as input for a simulation and
determine the caching benefits that could have been observed
if caching had been deployed.

I. INTRODUCTION

The past few years have seen the rise of web services and
user generated content. HTTP traffic has become one of the
dominant protocols in current networks, both seen from a
large Internet wide view [1] as well from a local networks’
point of view [2], [3]. One flavor of user generated content
that has come to a special interest of network operators and
network researchers is video content. Video platforms such as
YouTube, are known to be responsible for a large share of
the overall amount of traffic exchanged in certain networks. A
recent study from Labovitz et al. [1] quantifies this share to
be as large as 20–40% of all HTTP traffic. With YouTube
being one of the most popular video sharing applications,
researchers conducted a lot of work that aims at understanding
the platform and its impact on network traffic.

Over-the-top (OTT) video services such as YouTube are
challenging for network operators, as these contribute a large
amount of traffic in their (access) networks. Furthermore,
video traffic is expected to experience a strong increase for
mobile device usage [4]. As video content is typically static,
and video popularity on platforms like YouTube is assumed
to be Zipf distributed (except for the tail) [5], [6]. Thus,
video content is seen to be a good candidate for caching.
However, several properties of YouTube traffic might have
negative impact on cache hit rates and cache performance:
One important factor is video popularity. Global popularity of

YouTube videos, measured in view counts, must not necessar-
ily match local peculiarities in a specific operator network [7].
Popularity distributions may differ slightly depending on the
network that a cache has to serve.

Factors such as video encodings or user behavior can impact
cache performance, too. YouTube introduced several video
encoding formats for its videos starting in 2007. Due to these
different encodings, otherwise equal content is transformed
into a complete different (as seen from a caches’ perspective)
video. Users can switch between encodings while watching
videos, they can abort video download before completion, or
can start watching a particular video from a certain position
in the video file.

Our work aims at quantifying the caching potential of video
traffic in end-networks. We picked the YouTube video platform
for our study because it is one of the major platforms for
user generated video distribution, and has therefore received
a lot of attention from researchers, operators and network
equipment vendors. For our work, we monitored and analyzed
all YouTube video traffic from an end-network with more than
120,000 users over a period of a month. We examine this
traffic with respect to relevant parameters for network caches,
and report our findings. Building on this traffic evaluation, we
simulate an in-network cache for this network. We estimate
the caching potential and the reduction of downstream network
traffic that can be avoided because of such a cache.

The remainder of this paper is organized as follows. Fol-
lowing this introduction, Section II presents related work that
studies YouTube or caching of video data. In addition, we
show where our work extends and complements previous
studies. Section III introduces the parts of the YouTube ap-
plication that are relevant for understanding our work. We
explain interactions between clients and the YouTube video
servers which have impact on the operation of a video cache.
Section IV presents our traffic monitoring setup and introduces
the network in which our vantage point has been deployed. The
obtained data sets span a period of one month and several gen-
eral properties are discussed. Afterwards, we discuss several
properties of this data sets which are relevant for caching, and
present our evaluation on the benefits of an in-network video
cache in Section V. Our paper is concluded in Section VI with
a summary of our results and an outlook on future work.



II. RELATED WORK

Related work can be grouped into several categories: Some
papers discuss on the shares of YouTube traffic in the overall
traffic mix. Others focus on YouTube traffic characteristics,
YouTube’s infrastructure, or caching of video content.

Popularity of YouTube videos has been studied from differ-
ent view points. One branch of papers use active crawling of
YouTube sites to determine popularity or try to find reasons
for popularity of various videos [8]. Figueiredo et al. [9] focus
on popularity development over time. Their findings conclude
that a lot of videos show a viral popularity growth, indicating
potentials for caching. Others find power-law patterns with
truncated tails in global video popularity distributions and
predict good caching potentials [5], [10].

Video popularity has also been studied from network local
perspectives [11], and local and global video popularity have
also been compared [7]. These studies show that the global
popularity of video content does not have to match the local
popularity. For example, Gill et al. [7] find that the Top 100
videos from global YouTube video rankings are viewed in their
network but do not have any significant contribution to the
overall amount of YouTube traffic observed. Caching strategies
must therefore consider local popularity and view counts.

Other work tries to provide a better understanding of
the YouTube web application or YouTubes’ infrastructure
Such work includes attempts to inspect YouTubes’ policies
for picking local data centers for video downloads [12], or
describe load-balancing or traffic asymmetry from the view
point of a Tier-1 provider [13]. Finamore et al. [14] assess
YouTube traffic by evaluating several YouTube traces from
different networks. They study traffic and video patterns for
YouTube videos from mobile and PC-based devices, and show
differences between traffic of these devices.

Caching potentials have been considered by Ager et al. for
different protocols in [15] where they outline good potentials
for caching HTTP in general. Zink et al. evaluate caching
of YouTube videos [11]. In their study, the authors collect
three one-week traces from a university network and use these
as input for cache simulation. The authors consider client,
P2P and proxy caches and estimate cache video hit rates.
They conclude that high video hit rates can be achieved even
with small caches. We extend their work by accounting more
important factors such as video encoding formats, aborted
video downloads and their impact on caches. Furthermore, we
do not only consider video hit rates, but more sophisticated
metrics such as content hit rates. Using these metrics, we
can show that other caching strategies, such as chunk-wise
caching strategies, provide better cache performance than the
previously proposed and evaluated caching.

III. YOUTUBE EXPLAINED

The YouTube video application has been studied in a
variety of previous work. Our discussion of the YouTube video
application considers those parts of the application that have
direct impact on caching and are relevant for understanding

Fig. 1: Video downloads from PC and mobile players

our work. For a more detailed and complete description of the
YouTube video application, we refer the reader to [14].

When talking about YouTube, one has to be aware that
there is not a single web application for delivering videos, but
two different ones. The first application targets PC systems,
the other is optimized for mobile devices [14]. Both behave
different on the network level during video download phase,
but share common behavior before downloading a video.

Before a video can be requested from a video server, a
user has to become aware of this video. Users can find videos
from the YouTube portals sites (www.youtube.com for PCs
or m.youtube.com for mobile devices) or via other websites
which embed a video within an iframe. The portal or the
embedded iframe contain a reference to a video in form of
a unique video ID, which is then requested by the player.

Video download differs significantly between mobile- and
PC-based devices. As first difference, PC players most often
display videos using the Adobe Flash Plugin, which does not
exist on several mobile devices such as the iPhone. It is also
possible to watch videos directly using an HTML5 capable
browser. However, this feature is currently only in a trial phase
and users need to explicitly opt-in in order to download videos
using HTML5. Mobile devices, which connect to YouTube
from a WiFi network, usually do not have access to the Adobe
Flash Plugin. Instead, they request and obtain a MP4 container
(or similar) which includes the video directly.

The most important difference, however, is the process of
downloading a video. Figure 1 shows downloading procedures
for a PC and a mobile player. PC players, which are expected
to have access to much memory and/or disk space, download
a video using a single HTTP connection. Mobile players on
the other hand download a single video using multiple connec-
tions where each connection is used to download a different
chunk. HTTPs chunking mechanism is used to implement this
process. Chunks sizes are chosen by the client in the HTTP
header, and servers reply with a Partial Download HTTP
response. The first chunk size is always a request for a single
byte of the video. Video servers respond with the first video
byte along with the total size in bytes of the video. The client
will then request subsequent video chunks of bigger sizes to



download the video. Video encoding and start of the video are
also requested by the client, which applies to both the PC and
the mobile player.

IV. YOUTUBE TRAFFIC DATA SETS

This section builds the base for our YouTube traffic study.
We introduce our monitoring setup that we used to observe
and analyze YouTube traffic in in Section IV-A. Afterwards,
we describe general properties of our obtained data sets in
Section IV-B.

A. Monitoring Setup

Our vantage point was deployed in the Munich Scientific
Research Network (Münchner Wissenschaftsnetz, MWN) in
Munich, Germany.The research network interconnects three
major universities and several affiliated research institutions
in the area in and around Munich, Germany. Furthermore, the
network includes several student dorms that provide housing
for the students enrolled in the universities in Munich. In
total, the network hosts about 80,000 devices which are used
by approximately 120,000 users. The Leibniz Supercomputing
Center (Leibniz-Rechenzentrum, LRZ), who operates this net-
work, provides Internet access for all its users via a 10 GBit/s
link to its upstream provider the German research network
(DFN). Our vantage point was deployed on the border gateway
between the MWN and its upstream service provider. Due to
this deployment, we were able to observe both office related
as well as residential video traffic.

Our monitoring setup was built around standard of the shelf
PC hardware, operated by a Linux-based operating system. All
traffic properties where calculated during an online monitoring
run, as we where not able to store the many Terrabytes of
YouTube traffic that were observed during our monitoring
period. We used an optimized capturing setup, including our
improvement presented in [16], based on TNAPI [17] to build
a multi-core aware monitoring system. The measurement was
conducted with the tstat [18] tool, which has been used for
monitoring YouTube traffic before [14].

B. Data Set Properties

The monitoring setup was used to log information about
the YouTube video downloads for a period of one month. We
collected this data in order to be able to measure long-term
statistics of caching relevant parameters.

Table I describes the data set obtained throughout the
monitoring process. The measurement was started in mid-July
and was continually observing all video downloads until mid-
August. We decided to distinguish between PC player and
mobile player traffic, as shown in the table. Similar to [14],
we use HTTP return codes for distinguishing between PC
player and mobile players: Video requests from PC players
are answered with a HTTP 200 OK return code, while mobile
video requests are answered by 206 Partial Content.

Mobile downloads are only responsible for a small share
of the overall video traffic (1.6 TB for mobile downloads
vs. 40.3 TB for PC downloads) in our network. However,

TABLE I: Monitoring Data Overview

Property Value
Start time 16-Jul-2011 12:57:33 UTC
End time 15-Aug-2011 13:47:10 UTC
PC Player
# of video downloads 3,727,753
# of video IDs 1,235,676
# of videos with single encoding 1,129,548
# of videos with multiple encodings 106,128
Video traffic (PC player) 40.3 TB
Mobile Player
# of download connections 2,480,703
# of video IDs 73,601
# of videos with single encoding 70,388
# of videos with multiple encodings 3,213
Video traffic 1.6 TB

mobile downloads are responsible for quite a large number
of connections. This is due to the download procedure which
downloads a single video via multiple connections, as de-
scribed in Section III. We did not log the byte range requests
from the clients requesting the actual chunks. Thus, we cannot
give precise numbers about how many video downloads have
been seen.
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Fig. 2: Video encodings for PC and mobile traffic

One interesting difference between mobile and non-mobile
traffic can be found in the video encoding statistics, as shown
in Figure 2. Most watched videos on a PC platform are
transmitted as MPEG-4 AVC (H.264) encoded video with a
360p resolution which is embedded into a flash container.
Mobile videos are usually not embedded into flash containers,
but are downloaded in a MP4 container. As for video content,
the same encoding is used with a 360p resolution.

Hence, if the same video is watched with a mobile and a
PC-based player, there is a high probability that a cache needs
to deliver a completely different video (from a cache’s point
of view) for the same requested video. Operator networks that
provide network access to an equal amount of mobile and PC-
based devices, might therefore have to cache a lot of videos
twice due to different encodings. Networks that have only one
dominant type of video requests, such as the network we are
looking at, might thus employ a smaller cache.

We were curious about the content types which have been
requested most often by the users and therefore examined the
most often viewed videos from PC players. The biggest share



of the most popular videos where advertisements. Seven of
TOP 10 videos can be placed in this category, with most
of them being short ads for computer games. One particular
popular video (Top 2) is part of a campaign advertising for
a German pay TV station. We think that these videos were
embedded into non-YouTube related sites and automatically
downloaded by users who have visited those sites. The re-
maining two Top 10 videos are a news clip from CNN and
a short fun movie. Advertisements or trailers for computer
games, movies, cell phones, or beer dominate the Top 30 of
the most often viewed videos. Each of these videos has a view
count of more then 1500 views, and most of them are clips
with a run time of less than two minutes. In the following
section, we discuss several parameters that are relevant for
caching this video traffic.

V. EVALUATION

This section discusses video properties of the data obtained
in the previous section. Relevant parameters for caching are
discussed in Section V-A. Section V-B evaluates the benefits
of such an in-network cache. For the sake of brevity and due to
the fact that PC player traffic is dominant in our observations,
we will restrict our further discussion to PC player traffic.

A. Relevant Videos Parameters for In-Network Caching

There are several important factors of video traffic that have
large impact on a cache. These properties include video sizes,
number of views of a single video or the inter-request times
of multiple views, as caches can only provide benefit if videos
or parts of videos are watched more than once. We distinguish
between videos from a caches’ point of view: Two videos are
considered to be different if they have a different YouTube
video id, or if they share the same video id but are encoded in
different formats. In the following, we use the term video to
address unique video content. Furthermore, the term request
corresponds to a partial or full request of a video, while the
term view indicates a full download of a video.

Figure 3a presents the share of videos out of the observed
videos that have a particular number of requests. Our data
reveals that about 60% of all videos are only requested once
in our monitoring interval which results in an average number
of 2.7 requests per video. The remaining 40% of the videos
can be cached and delivered from the cache to other clients
for subsequent requests. The majority of the videos have been
requested ten or less times, but some of the videos are watched
several hundred or even thousand times.

The huge share of videos that are viewed only once or
a couple of times could lead to the assumption of only
little potential for caching. However, if traffic volumes are
considered, different trends can be observed: Figure 3b plots
the amount of video content delivered from the YouTube
servers for videos that have less than a certain amount of
views. The majority of videos that have been requested only
once are responsible for only approximately 30% of the video
traffic. Videos that are watched more than once account for
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Fig. 3: Video request counts and their impact on generated
traffic

the biggest part of the traffic, which emphasizes the potential
of in-network caches.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

C
um

ul
at

ed
 T

ra
ffi

c 
in

 T
B

 p
er

 V
id

eo
 ID

Fraction of Videos

Fig. 4: Total requested data of all videos

Figure 4 summarizes the influence of individual videos on
the overall amount of download traffic. The graph shows the
sum of the requested data per video sorted by traffic size in
order to outline the traffic contribution of the individual videos.
One can see that 80% of the videos are responsible for about
10 TB of traffic, while the remaining 20% account for 30 TB
of all downloaded video data. By identifying and caching
such high-profile videos, a cache can significantly decrease
the amount of download traffic and achieve good cache hit
rates without the need of a large storage capacity, since 20%
of the videos generate 75% of the video traffic.
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Fig. 5: Total requested data per video

If we focus on individual videos, we can recognize a similar



trend. Figure 5 plots the amount of traffic per video sorted by
traffic size. The amount of traffic is summed over all requests
of the video. The plot indicates that a very small fraction of
videos only contribute a very small share to the overall amount
of video data. These videos were probably watched only for
a single time and/or were aborted before being downloaded
completely. 4.2% of the videos’ download sizes are less than
1MB in data, while 4.9% of the video downloads generated
more than 100 MB of traffic. Thus, more than 90% of the
videos generate between 1 and 100 MB of traffic. The linear
increase of the traffic load of these videos points out that their
generated load can assumed to be uniform distributed.

Request size and number of requests per video are the two
factors that contribute to the amount of traffic that is generated
by a single video. Very large videos are responsible for a large
amount of traffic even if they are watched only a few times.
Small videos that are viewed very often can also accumulate
a lot of traffic over a large time interval. From a caches’ point
of view, videos with high request rates are most beneficial for
hit rates and cache efficiency. Moreover, high request rates
in combination with large request sizes would further reduce
traffic from the YouTube servers which results in a decrease of
link load between the edge network and the Internet. Table II
lists the amount of traffic and the number of views by the TOP
5 videos which generated the most download traffic1.

TABLE II: TOP 5 Videos

TOP Traffic (GB) Request Count videoID
1 68.3 7758 hJd9iCbpwuI
2 33.3 4204 zM41GVYYOMI
3 16.4 22 roFmDA2 yhg
4 16.3 2826 60ZO8fVkfH4
5 14.5 4944 Wsfgyyvs1tc

As one can see, the characteristics of the Top 5 videos in
terms of generated traffic load and number of views differs
significantly. The heterogeneity of the videos is indicated by
the number of requests, e.g. the video that is ranked third is
only requested 22 times but contributes 16.4 GB of traffic
whereas the video on fifth place is requested 4944 times. The
same characteristics can be recognized for the top 20 videos in
terms of requests which we cannot list due to space limitations.
However, the number of requests is still a reasonable decision
factor whether a video should be cached or not since the
average request size of all videos is 12.8MB.

Besides the amount of generated traffic per video, request
patterns play an important role for the efficiency of a cache.
Now, we take a closer look on the average inter-request time
of the videos and the time period during which the videos
were requested. Due to the heterogeneity of the videos, we
decided to evaluate both characteristics for different groups
of videos. The videos are grouped according to the number of
requests which reflects their popularity. The following intervals
were used to group the videos [2, 10[, [10, 100[, [100,∞[.
These groups are referred to as low, medium and high popular

1View video at http://www.youtube.com/watch?v=$videoID

videos, respectively. Figure 6 reveals that the average inter-
request time of videos differs significantly depending on the
number of requests. 95% of the average inter-request-times
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Fig. 6: CDF of average inter-request time depending on the
number of requests

of high popular videos are between 1000 and 10000 seconds
which is a strong contrast to those with less requests. The
videos with low or medium popularity have a much higher
variance of their inter-request times. Their results show that
the majority of these videos have an average inter-request time
of approximately 30 seconds. We assume that this represents
a typical value for non-popular videos, which are posted in
social networks. Thus, it is likely that friends will request the
posted video resulting in a couple of full or partial downloads
within a rather short period of time. In addition, a second peak
can be recognized for videos with less than 100 requests for
an average inter-request time of approximately one day which
results in a bimodal distribution.

Another important characteristic for caches is represented
by the request period which is the time difference between
the first and the last request of a video. According to our
definition, the maximum of the request period is limited by
the monitoring period. The cumulative distribution function
of the request period of videos with low, medium and high
popularity are shown in Figure 7. The figure points out that
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Fig. 7: Request period depending on the number of requests

videos with a smaller number of views tend to have a shorter
request period. 44% of videos with less than 10 requests have
a request period of less than a day. This share decreases for
videos with medium and high popularity to 20% and 3%,
respectively. More than 50% of the high popular videos have



a request period of more than two weeks. Almost 12% of all
videos were requested over the whole monitoring period which
shows that a significant amount of videos are popular over a
long time-period.

Cache sizes are very important for the estimation of caching
benefits. Due to limitations in cache sizes, videos that are no
longer watched need to be removed from a cache as soon as
its disk is no longer able to store new videos. A video should
not be removed if the probability for a subsequent request
in the near future is still high. For this reason, we evaluated
the probability that a video is requested at least one more time
depending on the number of previous requests. Figure 8 shows
the complementary probability of this event in order to provide
a higher readability. The probability that a video is requested
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time

at least one more time increases with the number of requests.
The re-request probability of a video that was requested one
time in the past is already 60%. This probability increases
to 86% for videos that were requested 10 times and exceeds
98% for videos that were requested more than 100 times. The
trend suggests that this probability converges against 99.9%.
However, the number of videos with such a high number of
requests was too low during our monitoring period to support
such a statement with a sufficient level of significance.

YouTube users do not necessarily watch videos from the
beginning since embedded YouTube videos can directly jump
into a specific part of video by specifying a starting offset. Fur-
thermore, if a user forwards a video to a not yet downloaded
offset, a new TCP connection will be opened which starts a
new download beginning from the chosen offset. Figure 9a
shows the CDF of the offset of all requests. The figure reveals
that 72% of all requests have an offset of zero This means the
majority of the users request the beginning of a video, which
is very beneficial for caches. Only 3.5% of all requests have
an offset greater than 1000s which results from the fact that
the average video duration is 331s.

In addition, users can abort a video download before the
video has been downloaded completely. This can happen for
several reasons, such as the user experiences bad download
quality or is not interested in the video [14]. Therefore, we
evaluate the behavior of the users by calculating the fraction
of request size and video size in order to track how much
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Fig. 9: Request characteristic

of the video the user has watched. The results are plotted in
Figure 9b. The figure shows that more than 50% of the requests
request the whole video. Another 20% still request almost half
of the video while only a very small fraction requests a small
part of the video.

Videos that are not watched completely do not need to be
fully cached. A cache has to decide whether the complete
file is downloaded when a new video is requested, or if
it only stores the requested bytes. We therefore examine
whether certain parts of a video are watched with a higher
probability, e.g. if the beginning of a video is more likely
to be watched than the middle or the end of the video.
Thus, we divided each video into chunks and calculated the
probability for each chunk to be downloaded. As offsets are
defined in milliseconds, we need to calculate byte offsets. For
this calculation, we use meta information such as total video
length (bytes and duration), which we could only obtain from
the flash containers. As a result, we can only evaluate the
chunk information for videos which where embedded in flash
containers. Figure 10 shows the probability for different parts
of the video to be watched in a given download. We observe
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that not all chunks are viewed with the same probability. Video
parts from the beginning of the video are more likely to be
viewed than the latter parts of the video. The probability for
a chunk to be viewed is decreasing with its distance from
the start of the video, which is probably due to the fact that
users abort a video before it is completely downloaded. We
will study the effect of this finding in the following from a
caches’ point of view. If a cache loads and caches unnecessary
chunks, it will on the one hand download too much content.
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Fig. 11: Request characteristic

This content will on the other hand fill up disk space which
is necessary for caching other relevant chunks.

B. Caching Benefits

For our evaluation of caching benefits, we use our mon-
itoring data as input for a simulation. Our simulation aims
at answering the question: ”What if a YouTube video cache
had been deployed in the network during our monitoring
period?” We calculate benefits that could have been provided
by different caches and caching strategies.

Caching strategies that define how videos are downloaded
and replaced are very important. Another important factor is
the disk size, which is a major limitation factor for cache
performance. A caching strategy must decide for each user
request, whether it will download the complete video or only
those parts that have been requested by a user.

Zink et al. [11] propose to download complete videos upon
user request and deliver subsequent requests from this video
cache. They also propose a last recently used replacement
scheme from the cache: If disk space is exhausted and a
new video needs to be stored, the video that has not been
requested for the longest time is removed from the cache.
We implemented a simulation of this caching strategy and
plotted the video and content hit rates for various disk sizes.
A video hit is a user request for a video, which can be
successfully answered from the cache. Video misses are user
requests for videos that need to be fetched from the YouTube
video servers. The same is applied to content hits and misses.
Here we consider how many bytes of the request needed to be
fetched from the YouTube servers and how many bytes could
be delivered from the cache.

Figure 11a shows the cache hit and miss rates for all video
requests during our monitoring interval depending on the cache
size. We simulated caches with disks sizes between 100 GB
and 35 TB, in order to determine hit an miss rates. Similar
to Zink et al., we can see good hit rates. About 40% of all
requests can be delivered from a cache with very small disk
sizes (e.g. 100 GB). A cache with 2 TB disk space, could
achieve a hit rate of more than 50%. Our maximum achievable
video hit rate is more than 60% for a cache that is able to
cache all requested content which corresponds to the video
re-request probability for a video as shown in Figure 8.

However, a hit rate of more than 50% of the videos does not
necessarily imply a high content hit rate. Figure 11b shows the
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Fig. 12: Downloaded content from YouTube video servers

content hit rate for caches of various sizes. We plot for each
requested byte whether it could be delivered from the cache or
whether it must be fetched from the YouTube infrastructure.
Similar trends can be observed when looking at the hit and
miss rates. However, 2 TB of disk space are not sufficient for
a 50% hit rate in the cache. We need at least 8 TB in order to
achieve a content hit rate of 50%. The maximum content hit
rate is smaller than the video hit rate, but still exceeds 55%.

While these figures appear to be amazingly good, this
caching strategy requires downloading the complete video.
From our previous evaluation, we know that parts of the
videos are not necessarily downloaded. Figure 12 shows the
number of bytes that have been fetched from the YouTube
video servers depending on the cache size. It can be seen,
that this number is very high for small cache sizes and
reduces to 33.6 TB with higher cache sizes. The reason for
this is that all unique video content, if fully downloaded,
results in 33.6 TB of traffic. However, users did not download
this unique content completely, but only parts of it. This
unnecessarily fetched data must be stored on disk and occupies
disk space which is needed for videos that are requested
completely or requested multiple times. For small cache sizes,
many important videos are removed from the cache, and need
therefore to be downloaded from YouTube several times for
subsequent user requests. It is therefore important not only to
look at cache hit rates, but also on the number of bytes which
have to be fetched from the YouTube video infrastructure. One
more important conclusion, according to our monitored data,
is that a caching strategy which fetches the complete content
instead of the requested content, is not an efficient strategy.

Thus, we evaluated a cache which only stores content
chunk-wise (chunk strategy): Videos are separated into 100
chunks, and chunks are only cached on user request. For the
reasons outlined before, we can only consider flash content
for this evaluation.

Therefore, the numbers for video data and requested content
change: The complete size of the flash videos is 29.5 TB
(compared to 33.6 TB for all videos). 9.7 TB of this video
sizes where not viewed at all, e.g. due to premature download
aborts. Storing these parts of the videos in the cache would
unnecessarily occupy valuable disk space. User requests to
YouTube for flash content sum up to 34.4 TB of video
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downloads, if no cache is used. A cache which downloads the
complete video content if a video is requested (as simulated
before), will download 29.5 TB of flash content from the
YouTube provided that it is able to cache all requested videos.
These two numbers are therefore the base-line for our chunked
caching strategy.

A caching strategy has to provide mechanisms that decide
when to store a chunk. Each chunk can be stored when it is
requested for the first, the second, or more times. This decision
has large impact on storage requirements and download traffic
reduction of a cache. Popular chunks need to be downloaded
twice, three times or more before any cache hit can appear,
thus reducing the benefits in download traffic. On the other
hand, waiting for a chunk to be requested several times before
caching reduces the required cache size.

We evaluated the effects and benefits of a chunked caching
strategy and plotted the results in Figure 13. The figure shows
the cache sizes that are required and the traffic to the YouTube
infrastructure, depending on the number of requests of a chunk
before this chunk is stored. If we store chunks at their first
request, a cache needs disk space of 19.5 TB for storing
all chunks, and generates the same amount of traffic to the
YouTube servers. Hence, when deploying such a cache, the
amount of downloads from YouTube can be reduced by 15 TB.
If we cache chunks on the second occurrence of a chunk, the
required cache size drops to 5 TB (diamond markers), and the
amount of traffic to the YouTube servers increases to about
25 TB (cross markers). The amount of reduced download
traffic drops by this 5 TB (triangle markers), since popular
chunks need to be fetched twice. By comparing the results
of the chunked caching strategy with the complete download
strategy (triangle markers vs. dashed line), we can see that a
properly configured chunked caching strategy performs much
better than a properly configured strategy that downloads
complete videos. Furthermore, the chunked strategy allows to
deploy smaller caches to achieve this high caching benefits.

VI. CONCLUSION

In our study, we monitored and analyzed traffic between a
large operator network and the YouTube video distribution site
for over a month. We were able to find good local popularity
values for YouTube videos, which result in high caching po-
tential. User behavior, such as users not fully watching a video,

can have significant negative impact on caching performance
and effectiveness. Caches that do not take this behavior into
account, experience caching performances penalties compared
to properly configured caches. Our analysis revealed, that a
chunked caching strategy provides very good performance for
YouTube video content. In future work, we plan to extend our
study to other video platforms than YouTube, and to propose
concrete cache implementations that can be used with various
video platforms.
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